Configuration
The behaviour of Pydantic can be controlled via a variety of configuration values, documented
on the ConfigDict class. This page describes how configuration can be
specified for Pydantic's supported types.
Configuration on Pydantic models¶
On Pydantic models, configuration can be specified in two ways:
- 
Using the
model_configclass attribute:from pydantic import BaseModel, ConfigDict, ValidationError class Model(BaseModel): model_config = ConfigDict(str_max_length=5) # (1)! v: str try: m = Model(v='abcdef') except ValidationError as e: print(e) """ 1 validation error for Model v String should have at most 5 characters [type=string_too_long, input_value='abcdef', input_type=str] """- A plain dictionary (i.e. 
{'str_max_length': 5}) can also be used. 
Note
In Pydantic V1, the
Configclass was used. This is still supported, but deprecated. - A plain dictionary (i.e. 
 - 
Using class arguments:
from pydantic import BaseModel class Model(BaseModel, frozen=True): a: str # (1)!- Unlike the 
model_configclass attribute, static type checkers will recognize thefrozenargument, and so any instance mutation will be flagged as an type checking error. 
 - Unlike the 
 
Configuration on Pydantic dataclasses¶
Pydantic dataclasses also support configuration (read more in the dedicated section).
from pydantic import ConfigDict, ValidationError
from pydantic.dataclasses import dataclass
@dataclass(config=ConfigDict(str_max_length=10, validate_assignment=True))
class User:
    name: str
user = User(name='John Doe')
try:
    user.name = 'x' * 20
except ValidationError as e:
    print(e)
    """
    1 validation error for User
    name
      String should have at most 10 characters [type=string_too_long, input_value='xxxxxxxxxxxxxxxxxxxx', input_type=str]
    """
Configuration on TypeAdapter¶
Type adapters (using the TypeAdapter class) support configuration,
by providing a config argument.
from pydantic import ConfigDict, TypeAdapter
ta = TypeAdapter(list[str], config=ConfigDict(coerce_numbers_to_str=True))
print(ta.validate_python([1, 2]))
#> ['1', '2']
Configuration on other supported types¶
If you are using standard library dataclasses or TypedDict classes,
the configuration can be set in two ways:
- 
Using the
__pydantic_config__class attribute:from dataclasses import dataclass from pydantic import ConfigDict @dataclass class User: __pydantic_config__ = ConfigDict(strict=True) id: int name: str = 'John Doe' - 
Using the
with_configdecorator (this avoids static type checking errors withTypedDict):from typing_extensions import TypedDict from pydantic import ConfigDict, with_config @with_config(ConfigDict(str_to_lower=True)) class Model(TypedDict): x: str 
Change behaviour globally¶
If you wish to change the behaviour of Pydantic globally, you can create your own custom parent class with a custom configuration, as the configuration is inherited:
from pydantic import BaseModel, ConfigDict
class Parent(BaseModel):
    model_config = ConfigDict(extra='allow')
class Model(Parent):
    x: str
m = Model(x='foo', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}
If you provide configuration to the subclasses, it will be merged with the parent configuration:
from pydantic import BaseModel, ConfigDict
class Parent(BaseModel):
    model_config = ConfigDict(extra='allow', str_to_lower=False)
class Model(Parent):
    model_config = ConfigDict(str_to_lower=True)
    x: str
m = Model(x='FOO', y='bar')
print(m.model_dump())
#> {'x': 'foo', 'y': 'bar'}
print(Model.model_config)
#> {'extra': 'allow', 'str_to_lower': True}
Warning
If your model inherits from multiple bases, Pydantic currently doesn't follow the MRO. For more details, see this issue.
Configuration propagation¶
When using types that support configuration as field annotations, configuration may not be propagated:
- 
For Pydantic models and dataclasses, configuration will not be propagated, each model has its own "configuration boundary":
from pydantic import BaseModel, ConfigDict class User(BaseModel): name: str class Parent(BaseModel): user: User model_config = ConfigDict(str_to_lower=True) print(Parent(user={'name': 'JOHN'})) #> user=User(name='JOHN') - 
For stdlib types (dataclasses and typed dictionaries), configuration will be propagated, unless the type has its own configuration set:
from dataclasses import dataclass from pydantic import BaseModel, ConfigDict, with_config @dataclass class UserWithoutConfig: name: str @dataclass @with_config(str_to_lower=False) class UserWithConfig: name: str class Parent(BaseModel): user_1: UserWithoutConfig user_2: UserWithConfig model_config = ConfigDict(str_to_lower=True) print(Parent(user_1={'name': 'JOHN'}, user_2={'name': 'JOHN'})) #> user_1=UserWithoutConfig(name='john') user_2=UserWithConfig(name='JOHN')